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Modelling of the toughening mechanisms 
in rubber-modified epoxy polymers 
Part II A quantitative description of the microstructure-fracture 
property re/ationships 
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Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, 
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A mathematical model has been developed to quantify the relationships between the 
microstructure and fracture properties of multiphase rubber-toughened epoxy polymers. Good 
agreement between predictions from the model and experimental results have been found. The 
model also reveals that localized plastic shear banding in the epoxy matrix, running between the 
rubbery particles, is the dominating mechanism under all testing conditions. Plastic void growth in 
the epoxy matrix is the other main toughening mechanism. This latter mechanism is initiated by 
internal cavitation of the rubbery particle, or by debonding at the particle-matrix interface, and is 
particularly significant at higher test temperatures. 

1. I n t r o d u c t i o n  
An understanding of the relationships between the 
microstructure and fracture properties of crosslinked 
epoxy polymers toughened by the incorporation of 
a dispersed rubbery phase is of crucial importance if 
improved muttiphase materials are to be developed. 
However, our appreciation of such relationships re- 
mains largely empirical and it is, therefore, highly 
desirable to develop mathematical models to enable 
the fracture properties t ~ be predicted from the micro- 
structural parameters and the basic mechanical 
properties of the materials forming the phases in the 
toughened thermosetting polymer. 

Several models have been advanced in recent years. 
Kunz-Douglass et al. [1-1 developed a model which is 
based upon the energy dissipation during the stretch- 
ing and bridging of the crack surfaces by rubber par- 
ticles, i.e. termed the rubber-bridging mechanism. 
However, it is now generally accepted that rubber- 
bridging only plays a secondary role in the toughening 
of epoxy polymers. For example, this model failed to 
explain the phenomenon of stress whitening observed 
in most relatively tough rubber-modified epoxies. 

Evans et al. [2-1 proposed a synergistic model which 
takes all the possible mechanisms, including rubber- 
bridging, void growth and shear banding, into consid- 
eration. However, the validity of this model has not 
yet been established due to the lack of experimental 
data. Moreover, the proposed synergistic relationship 
between the rubber bridging mechanism and the other 
two mechanisms was based on the assumption that 
the increase in the fracture energy, AGue, scaled with 
the size of the process zone, ry, i.e. 

AGIc = [3r, (1) 

where 13 is a constant. Although this relationship 
appears to be appropriate for the transformation 
toughening of ceramics [2], there has been no con- 
firmation that it is valid for rubber-toughened poly- 
mers. Indeed, Yee [3] has cast doubts on the existence 
of synergism in the toughening mechanisms observed 
in rubber-toughened plastics. In a more recent model, 
Kinloch [4] calculated the increase in fracture tough- 
ness due to localized shear yielding inside the plastic 
zone. However, the contribution of plastic void 
growth of the epoxy matrix was not directly con- 
sidered and the rubber bridging mechanism was not 
taken into account. 

Obviously, a satisfactory model requires that the 
various energy-dissipating mechanisms are clearly 
identified and that their respective contributions to 
the increase in the fracture energy are quantified. Re- 
cent studies [1, 4-8] have provided a detailed descrip- 
tion of the toughening mechanisms involved in the 
fracture of rubber-modified epoxy polymers. They in- 
clude: (i) localized shear yielding, or shear banding, in 
the epoxy matrix which occurs between the rubbery 
particles [5, 6-1, (ii) plastic void, or hole, growth in the 
epoxy matrix which is initiated by cavitation or de- 
bonding of the rubbery particles [7, 8-1 and (iii) the 
rubber-bridging mechanigm [1]. These mechanisms 
are schematically demonstrated in Fig. 1. The above 
studies form the necessary foundation for the develop- 
ment of a quantitative mathematical model. 

2. The model 
2.1. Introduction 
The fracture energy of a rubber-toughened polymer 
may be expressed [4] by 

G~o = G~cu + W (2) 
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Figure 1 A schematic representation of the different toughening 
mechanisms involved in the fracture of multiphase rubber- 
toughened epoxy polymers. The diameter of the plastic, or process, 
zone is 2ry. 

where G~r represents the fracture energy of the 
untoughened epoxy and h u represents the overall 
toughening contributions. Obviously, q~ contains the 
contributions from the three different toughening 
mechanisms and can be separated into three terms 

q) = AGs + AGv + AGr (3) 

where AGs, AGv and AGr represent the contributions 
to the overall increase in the fracture energy, G~c, from 
the localized shear banding, plastic void growth, and 
rubber-bridging mechanisms respectively. 

Now AG r may be evaluated via the model of Kunz- 
Douglass et al. [1]. The other two terms, AGs and 
AGv, are related to the size of the plastic zone and may 
be calculated from the following equation: 

AGs or AG~ = 2 U(r)dr (4) 
do 

where ry is the radius of the plastic zone ahead of the 
crack tip, r is the distance measured from the crack tip 
and U(r) is the dissipated strain-energy density for the 
respective toughening mechanism; U(r) has been de- 
noted as Us(r) for the shear yielding mechanism and 
U~(r) for the plastic void growth mechanism. Further 
development of the model requires the evaluation of 
the size of plastic zone and the dissipated (or loss) 
strain-energy densities for the two toughening mech- 
anisms. 

2.2. Estimation of plastic zone size 
From the concepts of linear elastic fracture mechanics 
(LEFM), the radius of the plastic zone, or process 
zone, is inversely proportional to the square of yield 
stress, as may be observed [9] from the following 
equation for the plane-strain case: 

ry = (1 /6x)(K1/0 .y)  2 (5) 

where K~ is the stress intensity factor and 0.y is the 
yield stress. Assuming the plastic zone radii for the 
rubber-modified and the unmodified epoxies are ry 
and r~, respectively, then, to a first approximation 
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ry/ryu = (Cyyu/0"c) 2 (6) 

where 0"yu is the yield stress for the unmodified epoxy 
and 0"c is the critical stress for the rubber-modified 
material, as defined in Part I of the present paper [7]. 
The critical stress, 0"~, is the stress at which yielding 
starts in the matrix in the multiphase material and 
may be related to the yield stress of the matrix by 

0.yu/0.c =- Kvm (7) 

where Kvm is the maximum stress concentration factor 
of the von Mises stress in the plastic matrix. The value 
of Kvm may be calculated [7] from the finite-element 
method and represents the reduction in the effective 
yield stress. Combining the above two equations 
leads to 

ry / ry  u = Kv2m (8) 

Equation 8 therefore predicts that the plastic zone size 
of a rubber-modified epoxy is increased by a factor 
equal to 2 Kvm , due to the stress concentrations in the 
epoxy matrix around the rubber particles or voids. In 
the latter case, the voids are created by the internal 
cavitation of the dispersed rubbery particles, or de- 
bonding of the rubber particles from the matrix. 

If there is no cavitation or debonding of the rubber 
particles followed by further void growth, then Kvm is 
the stress concentration factor caused only by the 
presence of the rubbery particles, and the calculations 
should be based upon the initial volume fraction, 
Vfr of rubbery particles. If, however, cavitation or 
debonding does occur and the voids continue to grow 
via plastic deformation of the epoxy matrix, the result- 
ant volume fraction of voids, Vfv, will be higher than 
Vfr. The stress concentration factor increases with the 
volume fraction of rubber particles or voids, as re- 
ported [7] previously. Obviously, therefore, the stress 
concentrations in the epoxy matrix will be enhanced 
by the void growth process, and under such cir- 
cumstances Vfv should be used to calculate the value 
of Kvm. 

However, it is known that the yielding of glassy 
polymers is usually dependent on the hydrostatic 
stress component, and that the simple yon Mises cri- 
terion is not Strictly satisfied [10]. Instead, the yon 
Mises criterion should be modified by 

Tvm = Ty - -  PmP (9) 

where ~vm is the von Mises shear stress, as defined in 
Equation 10, zy is the yield stress under pure shear, ].t m 
is a material constant and p is the hydrostatic stress. 
Thus 

(O1 - -  0"2) 2 "{- (0"2 - -  0 3 )  2 

+ (0"3 - -  0"1) 2 = 20"v2m 

and 

P = �89 -}- 62  -}- 0"3) 

= 6ZvZ, n ( 1 0 )  

where O'vm is the von Mises tensile stress and the value 
of Prn has been reported [11] to be between 0.175 and 
0.225, and was taken to be 0.2. From Equation 9, it is 



obvious that the stress required for the material to 
shear yield under tensile loading is reduced. Hence, the 
relative size of the plastic zone will be increased. This 
increase can be described by an increase in Kvm by 
a factor of (1 + gm/31/2), as derived in the Appendix. 
Therefore, Equation 8 has been modified to give 

2 ry = Kvm(1 -4- kLm/31/2)2ryu (11) 

2.3. The contribution from the shear banding 
mechanism 

As discussed earlier, it is necessary to ascertain the 
dissipated strain-energy density, U~(r), for the plastic 
shear banding mechanism to calculate the contribu- 
tion to the increased toughness from this mechanism. 
Now the value of U~(r) may be assessed from 

Us(r ) = Vfm(r ) Wd(r ) (12) 

where Vfm (r) is the volume fraction of the shear yielded 
matrix material inside the localized plastic-shear zone 
and Wd(r) is the plastic strain-energy density of the 
matrix material. Both parameters are assumed to be 
functions of the radial distance, r, from the crack tip. 
These two parameters are discussed separately below. 

2.3. 1. Volume fraction of the shear 
yielded matrix material 

The network of shear bands are schematically shown 
in Fig. 1, which is sketched from previous microscopic 
observations [4, 6]. Each rubbery particle has four 
shear bands associated with it, and these bands run 
between particles. A three-dimensional representation 
is given in Fig. 2 to illustrate the geometric relation- 
ships and, assuming a cubic array of particles, the 
average interfacial particle-particle distance, Op,  as  

defined in Fig. 2a, is given by 

D v = [ ( 4 r c / 3 V f )  ' /3  - 2]rp (13) 

where rp is the radius of the rubbery particle or void 
and Vf equals Vfr or Vfv, depending on whether there 
has been any void growth. The number of particles or 
voids per unit volume may be defined by 

Nv = 3Ff/(4rcr 3) (14) 

Next, assuming that the cross-sectional area of 
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Figure 2 The three-dimensional geometric relationships. (a) The 
basic element used to represent the packing of rubbery particles. 
(b) The rubbery particles and a localized plastic shear band in the 
epoxy matrix. 

a shear band scales with that diametrical cross-sec- 
tional of the particle or void, as in the case of rigid 
particulate-filled epoxy polymers [12], the cross-sec- 
tional area of a shear band, A ( r ) ,  is simply given by 

A ( r )  = ~(r)~zr  2 (15) 

where ~x(r) is the scaling factor and is assumed to be 
a function of r. The length of a shear band 2Ls, as 
defined in Fig. 2b, can then be expressed by 

2L, = 2rp + Dp - 2 1 1 -  o~(r)]l/Zrp (16) 

The volume of the shear bands per particle may then 
be calculated as: 

Vm = n , { A ( r ) L ~  - -  �89 - �89 2 

x [3rp - (Ls - �89 (17) 

where ns is the number of shear bands per particle, and 
is equal to four. Substituting Equations 13, 15 and 16 
into Equation 17 leads to 

Vm(r ) = (r~/6)n~r~ {3(4=/3 Vf)l/3~(r) 

+ 4[1 -- ct(r)] 3 / 2 - 4 )  (18) 

The volume fraction of the shear yielded matrix ma- 
terial is then given by 

Vfm(r)  = V m ( r ) N v  = 0.5 V f { 3 ( 4 ~ / 3 V f ) i / 3 c x ( r )  

+ 411 - ct(r)] 3 /2 -  4) (19) 

Now, the scaling factor was suggested by Kinloch 
[4] to be simply represented by 

cx(r) = 1 - r / ry  (20) 

The scaling factor, c~, takes into account the strain field 
in the process zone and 1 < ~ < 0. Close to the crack 
tip the plastic strains will be relatively high and ~ ~ 1; 
at the edges of the process zone, where the strains 
approach the elastic limit c~ ~ 0. Thus, essentially, the 
variation in the value of ~ allows for the degree of 
shear yielding becoming more intense as the crack tip 
is approached. 

2.3.2. The shear plastic strain-energy density 
If the material is assumed to be perfectly elastic-plas- 
tic, then the shear plastic strain-energy density may 
then be defined by 

Wd(r) = zyy(r) (21) 

where ~y and y(r) are the shear yield stress and the 
shear plastic strain of the matrix polymer. 

Now for a material with the following macroscopic 
stress versus strain law: 

~, ~--" gy((Yvm/QYy) n (22) 

where n is the work hardening exponent, the strain 
fields near the crack tip were reported [13, 14] to be 
given by 

~'ij ~ r-n/(n+ l) (23) 

where e u are the components of the strain tensor. 
When n--* 0% which corresponds to an elastic-per- 
fectly-plastic material, Equation 23 becomes 

~ij ~ r-1 (24) 
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The above equation states that for an elastic-per- 
fectly-plastic material, the strain components scale 
with the inverse of the distance, r, inside the plastic 
zone. As a result, the following relationship may be 
assumed: 

y(r) = 7f~(r) (25) 

where 7e is the shear fracture strain of the matrix 
epoxy. 

Thus the following expression for the shear plastic 
energy density may be obtained [10]: 

Wd(r) = 0.5~yc'}'f0~(r) (26) 

where %r is the compressive yield stress of the matrix 
material, and values of %r and 7f may be determined 
by using the plane-strain compression test [4, 9, 15]. 

2.3.3. Evaluation of the increase in the 
fracture energy due to shear banding 

By substituting Equations 19 and 26 into 12, the strain 
energy density arising from the shear banding mech- 
anism may be calculated as 

Us(r) = 0.25 Vecyyc yfo~(r) { 3(4rc/3 Vf )l/3ot(r) 

+ 4[1 - ~(r)] 3 /2 -  4} 

= 0.25 Vf%cvff(r) (27) 

where 

f(r) = ~(r){3(4n/3Vf)x/aa(r) + 411 - 0t(r)] 3/2"- 4} 

(28) 

The increase in fracture energy due to the shear yield- 
ing mechanism, AGs, may then be calculated by 
substituting Equations 27 and 28 into Equation 4 to 
obtain 

AG~ = 2 Us(r)dr = 0.5Vf%cTfF(ry) (29) 
do 

where F(ry) may be expressed as 

fo'" f o ' ~ 3 ( 4 n )  u3 F(ry) = f (r )dr  = ( \3Vf 0~(r) 

+ 411 - ~(r)] 3 / 2 -  4tcz(r)dr (30) 

From Equation 20, then 

dot = - dr/ry (31) 

Substituting Equation 31 into 30 gives 

fo [3(4  3"3=2 F(r,) = r, L \ 3 h i  

+ 4o~(1 - 00 3/2 - 4o~J d~ 

= rr[(4n/3Ve) x/3 -- 54/35] (32) 

Substituting Equations 11 and 32 into 29 leads to 

AG~ = 0.5(1 + g~/3x/2)2[(4rc/3Vf) u3 

- 54/35] Vfo'ye'/fryuKv2m (33) 

Considering the parameters in the above equation, 
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then the value of ryu may be calculated from the 
fracture energy of the unmodified epoxy. Vf is the 
volume fraction of the initial rubbery particles, or 
the voided particles, and may be obtained directly 
from electron micrographs of the material, by using 
image analysis techniques if required [7, 8]. The values 
of Cry c and 7f may be measured by using the plane- 
strain compression test method [15] and Kvm may be 
calculated by using finite-element analysis [-7], as 
described in Part I of the present studies. 

2.4. The contribution from the plastic void 
growth mechanism 

The increase of volumetric strain, dO, of a void during 
growth may be expressed as [2] 

dO = VydV/V (34) 

where Vf and V are the volume fraction and the 
average volume of the voids respectively. When a void 
grows from a volume of Vo to 1/1 the following rela- 
tionship is valid if Vf = Vfr at V = Vo and Vf = Vfv at 
V = Vx, namely: 

Vf = Vfr + ( V -  V0) (35) 
1/1-1/0 

Now, the strain-energy density for a void to grow 
from a volume of Vo to V1 is given by 

Uv(r) = pd0 (36) 
o 

where p is the local hydrostatic stress, or the local 
mean stress. The local hydrostatic stress may be 
assessed by using a schematic model proposed by 
Knott  [16] 

p = O'yt(0.5 + r/a) (37) 

where r is the distance from the crack tip, %t is the 
tensile yield stress of the material, and a is the crack 
length. Assuming LEFM is valid 

r ~ a (38) 

Consequently, in the plastic zone 

p ~ 0.5%t (39) 

Combining Equations 34 and 35 and then substituting 
these, and Equation 39, into 36 and integrating, yields 

Uv(r) = 0'5~ - Vfr -[- ( Vfr ~ T V o -  ) 

,,0, x log Voo 

Assuming that 

Vx/Vo - Vrv/Vfr (41) 

then Equation 40 becomes 

Uv (r)' = 0.5 %t (Vfv - Vfr) (42) 

Substituting Equation 42 into 4 and then integrating 
and substituting for ry from Equation 11, the contribu- 
tion to the increase in fracture energy from the plastic 
void growth mechanism is given by 

A6 v ~- (1 -1- Um/3X/2)2(Vfv --  Ver)(YytryuK2m 

(43) 



Again, Vf, and Vfv may be directly measured from 
the appropriate electron micrographs and the value of 
ry, may be calculated from the fracture toughness of 
the unmodified epoxy. The value of Kvm may be deter- 
mined by using the finite-element method [7]. Due to 
the effect of hydrostatic stress on the yield behaviour 
of glassy polymers, the tensile yield stress, (Yyt, is 
related to the compressive yield stress, Cyyc, by the 
following equation (see the Appendix): 

O'y t = (Yyc(31/2 - -  kl, m)/(31/2 -I- Jim) (44) 

Thus Equation 43 may be rewritten as 

AGv = (1 - (gz)/3)(Vf~ - Vf,)Oycr, uK~ 2 (45) 

2.5. The con t r ibu t ion  f rom the rubber-  
b r idg ing  mechanism 

An equation to assess the contribution of the rubber- 
bridging mechanism has been proposed by Kunz- 
Douglass et al. [1] to be of the form 

AG~ = 4Ft(T) Vfr (46) 

where Vf, is the volume fraction of rubbery particles 
and F~(T) is the tearing energy of the rubber particles. 
The tearing energy, Ft (T), at room temperature for the 
dispersed rubbery phase used in the present studies 
was estimated [17] to be about 460 4- 50 Jm  -2. These 
workers also undertook measurements at different test 
temperatures and the results are shown in Fig. 3. In 
the present study, the tearing energies at various tem- 
peratures will be obtained by interpolating or extra- 
polating the data shown in Fig. 3. 

3.  A p p l i c a t i o n  o f  t h e  m o d e l  
The value of ~F may now be evaluated from Equations 
3, 33, 45 and 46 to give 

~s = 0.5(1 + g m / 3 1 / 2 ) 2 [ ( 4 / ~ / 3 V f )  U3 - 54/35] 

x Vf(y,~yfry, K2m + (1 - (gz)/3)(Vfv - Vf,) 

x cry~ryuKv2m + 4Ft(T) Vfr (47) 

The model may now be applied to a rubber-modi- 
fied epoxy, which used 15 parts per hundred of resin 
(p.h.r.) of rubber (CTBN1300 x 8 rubber from BF 
Goodrich) and 5 p.h.r, piperidine as the hardener and 
was cured at 160 ~ for 6 h. Details of this material 
have been described in detail elsewhere [8, 18]. The 
material properties needed to apply the model, such as 
the yield stress and the fracture strain, have been 
previously reported [18, 19] and are tabulated, to- 

gether with the other parameters needed for the model, 
for a room temperature test and a displacement rate of 
2 mm min-1 in Table I. Substituting these material 
properties into Equations 2 and 47, allows the fracture 
energy, G1c, for the rubber-modified epoxy polymer to 
be predicted under these test conditions. The meas- 
ured value of 5.9 k Jm  -2 compares very favourably 
with the predicted value of about 5 kJ m -  2, especially 
when it is noted that there are no fitting terms in 
Equations 2 and 47. 

Further, the very good predictive capability of the 
model is revealed when the effect of test temperature 
and rate on the value of G1r are considered. Fig. 4 
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Figure 3 The tearing energy of the dispersed rubbery phase as 
a function of the test temperature (data from 1-17]). 
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Figure 4 Comparison between the theoretical predictions from the 
(C~) model and the (m) experimental results for the fracture energy, 
G~c, as a function of test temperature and rate of a rubber- 
toughened epoxy. 

T A B  LE I Properties of the materials used in the model for test conditions of 23 ~ and 2 mm m i n -  1. The value of Kvm from Part I [7] was 
4.54. The temperature and rate dependence of the properties E, cryc, 7f, Gic, F i T )  and Vfr and Vfv were experimentally measured [7, 8, 17, 19] 

Material Modulus,  E ~yc yf v Fracture Vfr Vfv rp Tg 
(GPa) (MPa) energy (pm) (~ 

(kJ m - 2) 

Epoxy matrix 3.2 116 0.71 0.35 0.46 - - 87 
Rubbery phase 0.002 - 0.49 0.46 - - - 52 
Rubber-toughened . . . . .  0.19 0.27 1.6 89 
epoxy 
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shows the measured values of G~c for the rubber- 
toughened epoxy in the form of a master curve, where 
ar is the time-temperature shift factor [4, 19-21] and 
tests were conducted over a range of test temper- 
atures from - 6 0  ~ to 40~ and displacement rates 
from 0.2 to 20 mm min-1. Plane-strain compression 
tests were undertaken over a similar range of test 
conditions, to give E, 0"y~ and 7f as a function of the 
test conditions, and the surfaces of the fracture tests 
were examined to ascertain values of Vfv. Again the 
agreement between the predicted values of G~ and the 
experimentally measured values is very good. 

The above model also allows the contributions from 
the different toughening mechanisms to be separated. 
Table II shows the proportional contributions to the 
total increase in the fracture energy from the three 
toughening mechanisms. Obviously, localized shear 
banding is the main toughening mechanism through- 
out the test temperature range. It constitutes more 
than 50% of the total dissipated energy, except when 
the temperature is relatively high at about 40 ~ At 
that temperature, the dominant proportion of the en- 
ergy dissipation comes from the plastic void growth 
mechanism. In fact, the contribution of this mechan- 
ism increases sharply with temperature, i.e. from 
about 0% at - 40 ~ to 50% at 40 ~ An increase in 
the test temperature causes a decrease in the yield 
stress of the matrix material and the ability for voids 
to grow in the matrix is subsequently enhanced. The 
rubber-bridging mechanism only plays a minor role. 
However, note that the contribution from the plastic 
void growth may be completely suppressed at low test 
temperatures. Under such conditions, the overall in- 
crease in toughness is small and the rubber-bridging 
mechanism makes a higher proportional contribution 
to the overall toughness. 

These data emphasize the importance of not only 
attaining the required microstructure, which consists 
of a dispersed rubbery phase in the thermosetting 
matrix, but also the ability of the thermosetting matrix 
to undergo plastic deformation. High test temper- 
atures and low test rates, when the matrix can undergo 
plastic yielding more readily, lead to higher values of 
G~c. However, other factors such as the chemical back- 
bone structure and degree of crosslinking of the 
matrix will obviously affect the ability of the matrix to 
plastically deform [18, 22] and so affect the toughness 
of the rubber-modified polymer. 

4. C o n c l u s i o n s  
A mathematical model has been developed to quantify 
the relationships between the microstructure and the 

fracture properties in rubber-toughened epoxy poly- 
mers. Predictions from the model are in good agree- 
ment with experimental results. For the multiphase 
polymer currently studied the model also reveals that, 
at room and low test temperatures, the localized shear 
yielding which is initiated by the rubbery particles and 
runs between particles is a major toughening mechan- 
ism. The plastic void growth is another main tough- 
ening mechanism at higher test temperatures, and 
its contribution increases sharply with rising temper- 
ature. The rubber bridging mechanism can also play 
a role when the ability of the matrix to undergo plastic 
deformation is suppressed. 

Appendix 
The yield behaviour of glassy polymers is typically 
dependent upon the hydrostatic stress component, p. 
Thus in the proposed model we need take this feature 
into account. 

Firstly, the stress concentrations around a rubbery 
particle were calculated in Part I I-7] by using a nu- 
merical finite-element analysis methods for a two- 
dimensional plane-strain model which was subjected 
to uniaxial loading. Thus the equivalent or yon Mises 
stress is given by 

0.vm = {0 '5 [ (O '1  - -  O"2) 2 -[- ( 0 . 2 -  O"3) 2 

+ (0.3 - -  0 . 1 )2 ]}  0"5 ~ 0"1 (A1)  

and 

P = (0"1 + 02 + 0"3)/3 ~ crl/3 ~ 0"v~,/3 (A2) 

Now from Equation 10 we have 

0"vm = 31/2Tvm (A3) 
hence 

p = "Cvm/31/2 (A4) 

Substituting Equation A4 into Equation 9, leads to 

Tvm = 'cy/(1 + g m / 3 1 / 2 )  (A5) 

The implication of Equation A5 is that the effective 
yield stress of a polymer is reduced by a factor of 
(1 + g m / 3 1 / 2 )  due to the dependence of the yield pro- 
cess on the hydrostatic stress component. This factor 
is therefore incorporated into Equation 11. 

Secondly, the dependence of the yield process on the 
hydrostatic stress also leads to the yield stress being 
different in tension and compression. For uniaxial 
tension: 

0"yt/31/2 = "C O - -  ~tmO'rt/3 (A6) 

while for compression, assuming the uniaxial and 

T A B  LE I I The proportional contributions to the increase in the fracture energy of the rubber-modified epoxy due to the three toughening 
mechanisms. Gjo was measured at a displacement rate of 2 mm m i n -  1. 

Temperature (~ - 60 -- 40 - 20 0 23 40 

Glc (kJ m -2) 1.72 1.96 2.53 3.64 5.90 7.23 

Gic (kJ m -a) (model) 1.30 1.49 ~ 2.05 2.72 4.79 8.25 

AG~/~ 0,64 0.74 0.68 0.60 0.54 0.47 
AGv/~  0.00 0.00 0.18 0.29 0.38 0.48 
A G , / q  ~ 0.36 0.26 0.14 0.t 1 0.08 0.05 
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plane-strain compressive yield stresses to be very sim- 
ilar in value 

cryo/31/2 = to + I-tm~yc/3 (A7) 

and combining Equations A6 and A7 leads to the 
relationship 

(Yyt = CYyc( 31/2 - -  P-m)/( 3t /2 + ~.lm) (44) 

Acknowledgements 
The authors thank the British Council for providing 
a studentship to Y. Huang, and Ciba Geigy (UK) and 
BF Goodrich (USA) for provision of materials. 

References 
1. S. KUNZ-DOUGLASS,  P. W. R. BEAUMONT and M. F. 

ASHBY, J. Mater. Sci. 15 (1980) 1109. 
2. A.G. EVANS, Z. B. AHMAD, D. G. GILBERT and P. W R. 

BEAUMONT, Acta Metall. 34 (1986) 79. 
3. A.F. YEE, in "Polymer blends: conference proceedings" (Plas- 

tics and Rubber Institute, London, 1990) p. EK1/1. 
4. A.J .  KINLOCH, in "Rubber-toughened plastics", edited by 

C. K. Riew, Advances in Chemistry Series, vol. 222 (American 
Chemical Society, Washington, D.C., 1989) p. 67. 

5. A.J.  K1NLOCH,  S.J.  S H A W a n d D .  L. H U N S T O N , P o t y m e r  
24 (1983) 1355. 

6. R .A .  P E A R S O N a n d A .  F. YEE, J. Mater. Sci. 21(1986)2475. 
7. Y. HUANG and A. J. KINLOCH, J. Mater. Sci. 27 (1992) 

2753. 
8. Idem., J. Mater. Sci. Lett., in press. 

9. A.J .  KINLOCH and R. J. YOUNG, "Fracture behaviour of 
polymers" (Applied Science Publishers Ltd, London, 1983). 

i0. P .B.  BOWDEN, in "The physics of glassy polymers", edited 
by R. N. Haward (Applied Science Publishers Ltd, London, 
1975). 

11. J .N .  S U L T A N a n d F .  J. M c G A R R Y , P o l y m e r E n g n g S c i .  13 
(1973) 29. 

12. J .W.  SMITH, "Deformation induced failure mechanisms in 
particulate filled epoxy resins", PhD thesis, Ecole Polytech- 
nique Federale de Lausanne (1989). 

13. J .R. RICE and G. F. ROSENGREN. J. Mech. Phys. Solids 16 
(1968) 1. 

14. J .W.  HUTCHINSON, J. Mech. Phys. Solids 16 (1968) 13. 
15. J .G.  WILLIAMS and 14. FORD, J. Mech. Engn 9 Sci. 6 (1964) 

7. 
16. J .F .  KNOTT, "Fundamentals of fracture mechanics" (Butter- 

worths, London, 1979). 
17. S .C.  KUNZ and P. W. R. BEAUMONT, J. Mater. Sci. 16 

(1981) 3141. 
18. A.J .  KINLOCH, C. A. FINCH and S. HASHEMI, Polymer 

Commun. 28 (1987) 229. 
19. Y. HUANG, "Microstructure-property relationships in 

toughened epoxy polymers", PhD thesis, University of 
London (1991). 

20. D .L .  HUNSTON, A. J. KINLOCH, S. J. SHAW and S. S. 
WANG, "Adhesive joints", edited by K. L. Mittal (Plenum 
Press, New York, 1984) p. 789. 

21. D. L. HUNSTON and G. W. BULLMAN, Int. J. Adhesion 
Adhesives 5 (1985) 69. 

22. R.A.  P E A R S O N a n d A .  F. YEE,J .  Mater. Sci. 24(1989)2571. 

Received 30 July 
and accepted 2 August 1991 

2769 


